ℹ️ These docs are for the v2.0 version of Galileo. Documentation for v1.0 version can be found here.
curl --request POST \
--url https://api.galileo.ai/v2/integrations/databricks/unity-catalog/edits/export \
--header 'Content-Type: application/json' \
--header 'Galileo-API-Key: <api-key>' \
--data '
{
"edit_ids": [
"<string>"
],
"catalog_name": "<string>",
"schema_name": "<string>",
"psl_content_file_name": "<string>",
"table_name": "<string>",
"task": "<string>",
"filter_params": {
"ids": [],
"span_regex": false,
"exclude_ids": [],
"likely_mislabeled_dep_percentile": 0,
"data_embs": false
},
"compare_to": "training",
"map_threshold": 0.5,
"all_but": false,
"file_type": "csv",
"include_cols": [
"<string>"
],
"col_mapping": {},
"hf_format": false,
"tagging_schema": "BIO",
"edit_overrides": [],
"only_export_edited": false,
"min_reviews": 1
}
'{
"edit_ids": [
"<string>"
],
"results": [
"<unknown>"
],
"task": "<string>",
"filter_params": {
"ids": [],
"span_regex": false,
"exclude_ids": [],
"likely_mislabeled_dep_percentile": 0,
"data_embs": false
},
"compare_to": "training",
"map_threshold": 0.5,
"all_but": false,
"file_type": "csv",
"include_cols": [
"<string>"
],
"col_mapping": {},
"hf_format": false,
"tagging_schema": "BIO",
"edit_overrides": [],
"only_export_edited": false,
"min_reviews": 1
}curl --request POST \
--url https://api.galileo.ai/v2/integrations/databricks/unity-catalog/edits/export \
--header 'Content-Type: application/json' \
--header 'Galileo-API-Key: <api-key>' \
--data '
{
"edit_ids": [
"<string>"
],
"catalog_name": "<string>",
"schema_name": "<string>",
"psl_content_file_name": "<string>",
"table_name": "<string>",
"task": "<string>",
"filter_params": {
"ids": [],
"span_regex": false,
"exclude_ids": [],
"likely_mislabeled_dep_percentile": 0,
"data_embs": false
},
"compare_to": "training",
"map_threshold": 0.5,
"all_but": false,
"file_type": "csv",
"include_cols": [
"<string>"
],
"col_mapping": {},
"hf_format": false,
"tagging_schema": "BIO",
"edit_overrides": [],
"only_export_edited": false,
"min_reviews": 1
}
'{
"edit_ids": [
"<string>"
],
"results": [
"<unknown>"
],
"task": "<string>",
"filter_params": {
"ids": [],
"span_regex": false,
"exclude_ids": [],
"likely_mislabeled_dep_percentile": 0,
"data_embs": false
},
"compare_to": "training",
"map_threshold": 0.5,
"all_but": false,
"file_type": "csv",
"include_cols": [
"<string>"
],
"col_mapping": {},
"hf_format": false,
"tagging_schema": "BIO",
"edit_overrides": [],
"only_export_edited": false,
"min_reviews": 1
}Show child attributes
Representation of a lasso selection (used by embeddings)
x and y correspond to the cursor movement while tracing the lasso. This is natively provided by plotly when creating a lasso selection, for example
0 <= x <= 100training, validation, test, inference csv, json, parquet, arrow, zip Supported NER Tagging schemas.
A tagging schema is a definition of the way NER data is formatted. The schema letters define the tags used within it. ex: BIOES - B means before (a token), I means in (a token), E means end (of a token), S means single (length token) See https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)
BIO, BIOES, BILOU Show child attributes
The available actions you can take in an edit.
relabel, delete, select_for_label, relabel_as_pred, update_text, shift_span, add_span, create_new_label training, validation, test, inference Show child attributes
Show child attributes
Show child attributes
Representation of a lasso selection (used by embeddings)
x and y correspond to the cursor movement while tracing the lasso. This is natively provided by plotly when creating a lasso selection, for example
0 <= x <= 100x >= 0Successful Response
Show child attributes
Representation of a lasso selection (used by embeddings)
x and y correspond to the cursor movement while tracing the lasso. This is natively provided by plotly when creating a lasso selection, for example
0 <= x <= 100training, validation, test, inference csv, json, parquet, arrow, zip Supported NER Tagging schemas.
A tagging schema is a definition of the way NER data is formatted. The schema letters define the tags used within it. ex: BIOES - B means before (a token), I means in (a token), E means end (of a token), S means single (length token) See https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)
BIO, BIOES, BILOU Show child attributes
The available actions you can take in an edit.
relabel, delete, select_for_label, relabel_as_pred, update_text, shift_span, add_span, create_new_label training, validation, test, inference Show child attributes
Show child attributes
Show child attributes
Representation of a lasso selection (used by embeddings)
x and y correspond to the cursor movement while tracing the lasso. This is natively provided by plotly when creating a lasso selection, for example
0 <= x <= 100x >= 0Was this page helpful?