ℹ️ These docs are for the v2.0 version of Galileo. Documentation for v1.0 version can be found here.
curl --request POST \
--url https://api.galileo.ai/v2/scorers/list \
--header 'Content-Type: application/json' \
--header 'Galileo-API-Key: <api-key>' \
--data '
{
"filters": [
{
"operator": "eq",
"value": "<string>",
"name": "name",
"case_sensitive": false
}
],
"sort": {
"name": "name",
"ascending": true,
"sort_type": "column"
}
}
'{
"starting_token": 0,
"limit": 100,
"paginated": false,
"next_starting_token": 123,
"scorers": [
{
"id": "<string>",
"name": "<string>",
"scorer_type": "llm",
"tags": [
"<string>"
],
"defaults": {
"model_name": "<string>",
"num_judges": 123,
"filters": [
{
"value": "<string>",
"operator": "eq",
"name": "node_name",
"filter_type": "string",
"case_sensitive": true
}
],
"scoreable_node_types": [
"<string>"
],
"cot_enabled": true,
"output_type": "boolean",
"input_type": "basic"
},
"latest_version": {
"id": "<string>",
"version": 123,
"scorer_id": "<string>",
"generated_scorer": {
"id": "<string>",
"name": "<string>",
"chain_poll_template": {
"template": "<string>",
"metric_system_prompt": "<string>",
"metric_description": "<string>",
"value_field_name": "rating",
"explanation_field_name": "explanation",
"metric_few_shot_examples": [
{
"generation_prompt_and_response": "<string>",
"evaluating_response": "<string>"
}
],
"response_schema": {}
},
"instructions": "<string>",
"user_prompt": "<string>"
},
"registered_scorer": {
"id": "<string>",
"name": "<string>",
"score_type": "<string>"
},
"finetuned_scorer": {
"id": "<string>",
"name": "<string>",
"lora_task_id": 123,
"prompt": "<string>",
"luna_input_type": "span",
"luna_output_type": "float",
"class_name_to_vocab_ix": {},
"executor": "action_completion_luna"
},
"model_name": "<string>",
"num_judges": 123,
"scoreable_node_types": [
"<string>"
],
"cot_enabled": true,
"output_type": "boolean",
"input_type": "basic"
},
"model_type": "slm",
"ground_truth": true,
"default_version_id": "<string>",
"default_version": {
"id": "<string>",
"version": 123,
"scorer_id": "<string>",
"generated_scorer": {
"id": "<string>",
"name": "<string>",
"chain_poll_template": {
"template": "<string>",
"metric_system_prompt": "<string>",
"metric_description": "<string>",
"value_field_name": "rating",
"explanation_field_name": "explanation",
"metric_few_shot_examples": [
{
"generation_prompt_and_response": "<string>",
"evaluating_response": "<string>"
}
],
"response_schema": {}
},
"instructions": "<string>",
"user_prompt": "<string>"
},
"registered_scorer": {
"id": "<string>",
"name": "<string>",
"score_type": "<string>"
},
"finetuned_scorer": {
"id": "<string>",
"name": "<string>",
"lora_task_id": 123,
"prompt": "<string>",
"luna_input_type": "span",
"luna_output_type": "float",
"class_name_to_vocab_ix": {},
"executor": "action_completion_luna"
},
"model_name": "<string>",
"num_judges": 123,
"scoreable_node_types": [
"<string>"
],
"cot_enabled": true,
"output_type": "boolean",
"input_type": "basic"
},
"user_prompt": "<string>",
"scoreable_node_types": [
"<string>"
],
"output_type": "boolean",
"input_type": "basic",
"required_scorers": [
"<string>"
],
"label": "",
"included_fields": [
"<string>"
],
"description": "<string>",
"created_by": "<string>",
"created_at": "2023-11-07T05:31:56Z",
"updated_at": "2023-11-07T05:31:56Z"
}
]
}curl --request POST \
--url https://api.galileo.ai/v2/scorers/list \
--header 'Content-Type: application/json' \
--header 'Galileo-API-Key: <api-key>' \
--data '
{
"filters": [
{
"operator": "eq",
"value": "<string>",
"name": "name",
"case_sensitive": false
}
],
"sort": {
"name": "name",
"ascending": true,
"sort_type": "column"
}
}
'{
"starting_token": 0,
"limit": 100,
"paginated": false,
"next_starting_token": 123,
"scorers": [
{
"id": "<string>",
"name": "<string>",
"scorer_type": "llm",
"tags": [
"<string>"
],
"defaults": {
"model_name": "<string>",
"num_judges": 123,
"filters": [
{
"value": "<string>",
"operator": "eq",
"name": "node_name",
"filter_type": "string",
"case_sensitive": true
}
],
"scoreable_node_types": [
"<string>"
],
"cot_enabled": true,
"output_type": "boolean",
"input_type": "basic"
},
"latest_version": {
"id": "<string>",
"version": 123,
"scorer_id": "<string>",
"generated_scorer": {
"id": "<string>",
"name": "<string>",
"chain_poll_template": {
"template": "<string>",
"metric_system_prompt": "<string>",
"metric_description": "<string>",
"value_field_name": "rating",
"explanation_field_name": "explanation",
"metric_few_shot_examples": [
{
"generation_prompt_and_response": "<string>",
"evaluating_response": "<string>"
}
],
"response_schema": {}
},
"instructions": "<string>",
"user_prompt": "<string>"
},
"registered_scorer": {
"id": "<string>",
"name": "<string>",
"score_type": "<string>"
},
"finetuned_scorer": {
"id": "<string>",
"name": "<string>",
"lora_task_id": 123,
"prompt": "<string>",
"luna_input_type": "span",
"luna_output_type": "float",
"class_name_to_vocab_ix": {},
"executor": "action_completion_luna"
},
"model_name": "<string>",
"num_judges": 123,
"scoreable_node_types": [
"<string>"
],
"cot_enabled": true,
"output_type": "boolean",
"input_type": "basic"
},
"model_type": "slm",
"ground_truth": true,
"default_version_id": "<string>",
"default_version": {
"id": "<string>",
"version": 123,
"scorer_id": "<string>",
"generated_scorer": {
"id": "<string>",
"name": "<string>",
"chain_poll_template": {
"template": "<string>",
"metric_system_prompt": "<string>",
"metric_description": "<string>",
"value_field_name": "rating",
"explanation_field_name": "explanation",
"metric_few_shot_examples": [
{
"generation_prompt_and_response": "<string>",
"evaluating_response": "<string>"
}
],
"response_schema": {}
},
"instructions": "<string>",
"user_prompt": "<string>"
},
"registered_scorer": {
"id": "<string>",
"name": "<string>",
"score_type": "<string>"
},
"finetuned_scorer": {
"id": "<string>",
"name": "<string>",
"lora_task_id": 123,
"prompt": "<string>",
"luna_input_type": "span",
"luna_output_type": "float",
"class_name_to_vocab_ix": {},
"executor": "action_completion_luna"
},
"model_name": "<string>",
"num_judges": 123,
"scoreable_node_types": [
"<string>"
],
"cot_enabled": true,
"output_type": "boolean",
"input_type": "basic"
},
"user_prompt": "<string>",
"scoreable_node_types": [
"<string>"
],
"output_type": "boolean",
"input_type": "basic",
"required_scorers": [
"<string>"
],
"label": "",
"included_fields": [
"<string>"
],
"description": "<string>",
"created_by": "<string>",
"created_at": "2023-11-07T05:31:56Z",
"updated_at": "2023-11-07T05:31:56Z"
}
]
}Successful Response
Show child attributes
llm, code, luna, preset Show child attributes
List of filters to apply to the scorer.
Filters on node names in scorer jobs.
Show child attributes
eq, ne, contains "node_name""string"List of node types that can be scored by this scorer. Defaults to llm/chat.
Whether to enable chain of thought for this scorer. Defaults to False for llm scorers.
What type of output to use for model-based scorers (boolean, categorical, etc.).
boolean, categorical, count, discrete, freeform, percentage, multilabel What type of input to use for model-based scorers (sessions_normalized, trace_io_only, etc..).
basic, llm_spans, retriever_spans, sessions_normalized, sessions_trace_io_only, tool_spans, trace_input_only, trace_io_only, trace_normalized, trace_output_only, agent_spans, workflow_spans Scorer version from the scorer_versions table.
Show child attributes
Show child attributes
Template for a chainpoll metric prompt, containing all the info necessary to send a chainpoll prompt.
Show child attributes
Chainpoll prompt template.
System prompt for the metric.
Description of what the metric should do.
Field name to look for in the chainpoll response, for the rating.
Field name to look for in the chainpoll response, for the explanation.
Few-shot examples for the metric.
Response schema for the output
Show child attributes
span, trace_object, trace_input_output_only float, string, string_list Executor pipeline. Defaults to finetuned scorer pipeline but can run custom galileo score pipelines.
action_completion_luna, action_advancement_luna, agentic_session_success, agentic_session_success, agentic_workflow_success, agentic_workflow_success, agent_efficiency, agent_flow, bleu, chunk_attribution_utilization_luna, chunk_attribution_utilization, completeness_luna, completeness, context_adherence, context_adherence_luna, context_relevance, context_relevance_luna, conversation_quality, correctness, ground_truth_adherence, input_pii, input_pii_gpt, input_sexist, input_sexist, input_sexist_luna, input_sexist_luna, input_tone, input_tone_gpt, input_toxicity, input_toxicity_luna, instruction_adherence, output_pii, output_pii_gpt, output_sexist, output_sexist, output_sexist_luna, output_sexist_luna, output_tone, output_tone_gpt, output_toxicity, output_toxicity_luna, prompt_injection, prompt_injection_luna, prompt_perplexity, rouge, tool_error_rate, tool_error_rate_luna, tool_selection_quality, tool_selection_quality_luna, uncertainty, user_intent_change List of node types that can be scored by this scorer. Defaults to llm/chat.
Whether to enable chain of thought for this scorer. Defaults to False for llm scorers.
What type of output to use for model-based scorers (sessions_normalized, trace_io_only, etc.).
boolean, categorical, count, discrete, freeform, percentage, multilabel What type of input to use for model-based scorers (sessions_normalized, trace_io_only, etc.).
basic, llm_spans, retriever_spans, sessions_normalized, sessions_trace_io_only, tool_spans, trace_input_only, trace_io_only, trace_normalized, trace_output_only, agent_spans, workflow_spans slm, llm, code Scorer version from the scorer_versions table.
Show child attributes
Show child attributes
Template for a chainpoll metric prompt, containing all the info necessary to send a chainpoll prompt.
Show child attributes
Chainpoll prompt template.
System prompt for the metric.
Description of what the metric should do.
Field name to look for in the chainpoll response, for the rating.
Field name to look for in the chainpoll response, for the explanation.
Few-shot examples for the metric.
Response schema for the output
Show child attributes
span, trace_object, trace_input_output_only float, string, string_list Executor pipeline. Defaults to finetuned scorer pipeline but can run custom galileo score pipelines.
action_completion_luna, action_advancement_luna, agentic_session_success, agentic_session_success, agentic_workflow_success, agentic_workflow_success, agent_efficiency, agent_flow, bleu, chunk_attribution_utilization_luna, chunk_attribution_utilization, completeness_luna, completeness, context_adherence, context_adherence_luna, context_relevance, context_relevance_luna, conversation_quality, correctness, ground_truth_adherence, input_pii, input_pii_gpt, input_sexist, input_sexist, input_sexist_luna, input_sexist_luna, input_tone, input_tone_gpt, input_toxicity, input_toxicity_luna, instruction_adherence, output_pii, output_pii_gpt, output_sexist, output_sexist, output_sexist_luna, output_sexist_luna, output_tone, output_tone_gpt, output_toxicity, output_toxicity_luna, prompt_injection, prompt_injection_luna, prompt_perplexity, rouge, tool_error_rate, tool_error_rate_luna, tool_selection_quality, tool_selection_quality_luna, uncertainty, user_intent_change List of node types that can be scored by this scorer. Defaults to llm/chat.
Whether to enable chain of thought for this scorer. Defaults to False for llm scorers.
What type of output to use for model-based scorers (sessions_normalized, trace_io_only, etc.).
boolean, categorical, count, discrete, freeform, percentage, multilabel What type of input to use for model-based scorers (sessions_normalized, trace_io_only, etc.).
basic, llm_spans, retriever_spans, sessions_normalized, sessions_trace_io_only, tool_spans, trace_input_only, trace_io_only, trace_normalized, trace_output_only, agent_spans, workflow_spans Enumeration of output types.
boolean, categorical, count, discrete, freeform, percentage, multilabel Enumeration of input types.
basic, llm_spans, retriever_spans, sessions_normalized, sessions_trace_io_only, tool_spans, trace_input_only, trace_io_only, trace_normalized, trace_output_only, agent_spans, workflow_spans Fields that can be used in the scorer to configure it. i.e. model, num_judges, etc. This enables the ui to know which fields a user can configure when they're setting a scorer
Was this page helpful?