The GalileoLogger class provides the most granular control over logging in Galileo. While the wrappers and @log decorator are recommended for most use cases, the GalileoLogger gives you complete flexibility when you need it.

Overview

The GalileoLogger class allows you to:

  • Manually create and manage traces
  • Add spans of different types to your traces
  • Control exactly what data gets logged
  • Explicitly manage when traces are flushed to Galileo

This approach requires more code than using wrappers or decorators but gives you the most control over the logging process.

Basic Usage

Here’s a simple example of using the GalileoLogger to log an LLM call:

from galileo import GalileoLogger

# Create a logger instance with project and log stream
logger = GalileoLogger(project="my-project", log_stream="my-log-stream")

# Start a new trace
trace = logger.start_trace("Say this is a test")

# Add an LLM span to the trace
logger.add_llm_span(
    input="Say this is a test",
    output="Hello, this is a test",
    model="gpt-4o",
    num_input_tokens=10,
    num_output_tokens=3,
    total_tokens=13,
    duration_ns=1000,
)

# Conclude the trace with the final output
logger.conclude(output="Hello, this is a test", duration_ns=1000)

# Flush the trace to Galileo
logger.flush()

Detailed API

Initialization

from galileo import GalileoLogger

# Initialize with default settings (uses environment variables)
logger = GalileoLogger()

# Or specify project and log stream
logger = GalileoLogger(
    project="my-project",
    log_stream="my-log-stream"
)

Starting a Trace

# Start a basic trace
trace = logger.start_trace(input="User query")

# Start a trace with additional metadata
trace = logger.start_trace(
    input="User query",
    name="User Interaction",
    tags=["production", "user-123"],
    metadata={"session_id": "abc123", "user_id": "user-456"},
    duration_ns=1000000,  # Optional duration in nanoseconds
    created_at=datetime.now()  # Optional creation timestamp
)

Adding Spans

The GalileoLogger supports adding different types of spans to your traces:

LLM Spans

logger.add_llm_span(
    input="What is the capital of France?",
    output="The capital of France is Paris.",
    model="gpt-4o",
    tools=None,  # Optional list of tools used
    name="Capital Query",  # Optional name
    duration_ns=1000000,  # Optional duration in nanoseconds
    metadata={"temperature": "0.7"},  # Optional metadata
    tags=["geography"],  # Optional tags
    num_input_tokens=10,  # Optional token counts
    num_output_tokens=5,
    total_tokens=15,
    temperature=0.7,  # Optional model parameters
    status_code=200,  # Optional status code
    time_to_first_token_ns=500000  # Optional time to first token
)

Retriever Spans

logger.add_retriever_span(
    input="Query about Roman history",
    output=["Rome was founded in 753 BC...", "The Roman Empire reached its peak..."],
    name="History Retrieval",  # Optional
    duration_ns=500000,  # Optional
    metadata={"source": "history_db"},  # Optional
    tags=["history"],  # Optional
    status_code=200  # Optional
)

Tool Spans

logger.add_tool_span(
    input={"operation": "add", "numbers": [1, 2, 3]},
    output={"result": 6},
    name="Calculator",  # Optional
    duration_ns=100000,  # Optional
    metadata={"tool_version": "1.0"},  # Optional
    tags=["math"],  # Optional
    status_code=200,  # Optional
    tool_call_id="tool-123"  # Optional
)

Workflow Spans

# Start a workflow span
workflow_span = logger.add_workflow_span(
    input="Process user request",
    output=None,  # Can be set later
    name="Main Process",  # Optional
    duration_ns=None,  # Optional, can be set later
    metadata={"workflow_type": "user_request"},  # Optional
    tags=["workflow"]  # Optional
)

# Later, you can conclude the workflow span when concluding the trace

Concluding and Flushing

# Conclude the trace with the final output
logger.conclude(
    output="Final response to the user",
    duration_ns=2000000,  # Optional duration in nanoseconds
    status_code=200,  # Optional status code
    conclude_all=False  # Whether to conclude all open spans
)

# Flush the trace to Galileo
logger.flush()

Advanced Usage

Creating a Single-Span Trace

For simple LLM calls, you can create a trace with a single LLM span in one step:

logger.add_single_llm_span_trace(
    input="What is the capital of France?",
    output="The capital of France is Paris.",
    model="gpt-4o",
    tools=None,
    name="Capital Query",
    duration_ns=1000000,
    metadata={"temperature": "0.7"},
    tags=["geography"],
    num_input_tokens=10,
    num_output_tokens=5,
    total_tokens=15
)

Complex Trace Example

Here’s an example of creating a more complex trace with multiple spans:

from galileo import GalileoLogger
from datetime import datetime

logger = GalileoLogger(project="my-project", log_stream="my-log-stream")

# Start a trace for a user query
trace = logger.start_trace(
    input="Who's a good bot?",
    name="User Query",
    tags=["bot-interaction"]
)

# Add a retriever span for document retrieval
logger.add_retriever_span(
    input="Who's a good bot?",
    output=["Research shows that I am a good bot."],
    name="Document Retrieval",
    duration_ns=1000000
)

# Add an LLM span for generating a response
logger.add_llm_span(
    input="Who's a good bot?",
    output="I am!",
    model="gpt-4o",
    name="Response Generation",
    num_input_tokens=25,
    num_output_tokens=3,
    total_tokens=28,
    duration_ns=1000000
)

# Conclude the trace
logger.conclude(output="I am!", duration_ns=2000000)

# Flush the trace to Galileo
logger.flush()

Best Practices

  1. Use higher-level abstractions when possible: The @log decorator and wrappers are easier to use and less error-prone.

  2. Flush traces when appropriate: Call flush() at the end of a request or user interaction to ensure data is sent to Galileo.

  3. Include relevant metadata: Add tags and metadata to make it easier to filter and analyze your traces.

  4. Structure spans logically: Create a span hierarchy that reflects the logical structure of your application.

  5. Handle errors gracefully: Include status codes and error information in your spans to help with debugging.